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Abstract. We show that, in the framework of the effective-mass approximation, an electron
confined in a finite parabolic quantum well under crossed electric and magnetic fields can behave
as a double-quantum-well system. These homogeneous crossed fields are such that the magnetic
field is parallel to the heterostructure layers and the electric field is applied perpendicular to
the magnetic field. For a suitable choice of both fields, the electron is confined to a double-
guantum-well effective potential.

1. Introduction

Homogeneous crossed electric and magnetic fields are powerful tools that permit us to make
desired changes in the trajectories of charged particles. They have been used as a velocity
filter in early atomic physics experiments [1, 2], as well as in the study of the chaotic
behaviour of the electron trajectories of Rydberg atoms [3] nowadays. The recent advances
in the fabrication and characterization of semiconductor heterostructures have shown that
the quantum wells in superlattice heterostructures are well simulated by a finite parabolic
potential [4, 5]. In semiconductor research, quantum tunnelling is a fundamental effect.
For instance, wave-function tunnelling through potential barriers is related to electronic
transport phenomena [6]. New electronic devices have been developed that are based on
guantum tunnelling phenomena. In general, these semiconductor devices are related to
double-barrier resonant quantum tunnelling (DBRT) [7] as well as double-quantum-well
tunnelling (DQWT) systems [8]. In the present work, we study the behaviour of an electron
confined in a finite parabolic quantum well (FPQW) subjected to external homogeneous
crossed electric and magnetic fields. We will show that for suitable values of the applied
fields, this system can simulate the double-quantum-well (DQW) problem.

This work is organized in the following manner. In the second section, we develop the
theoretical model and, on the basis of numerical results, we discuss in the third section the
special features of the bound state of the system. Finally, we conclude by discussing the
main results of this work and some possible applications.

2. Theory

We consider a homogeneous magnetic fiddl = (0,0, B) applied parallel to the
heterostructure layers, so that in Landau’s gauge, the vector potential can be written as
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A = (0, xB, 0). The homogeneous external electric fi#ld= (—F /e, 0, 0) is perpendicular

to the magnetic field, wheré is a positive constant anel the modulus of the electron
charge. In the framework of the effective-mass approximation, the Hamiltonian of an
electron confined in a FPQW subjected to the above crossed electric and magnetic fields
can be written as

~ (P24 p?) | (py+exB)?
H= o + o +V(x)— Fx Q)
wherem* is the effective mass and the confining FPQW poteritias given by
m* 2.2 %, 2712
Vx) = O — |x]) + O(x| — L) (2)

where © is the Heaviside step function and the FPQW width and height @reai2d
Vo = m*w?L?/2 respectively. If the total energy of the systemFs and assuming free-
electronic lateral transport, the wave function can be written as

W(r) = explitkyy + k.2) ¥ (x).

The resulting Sclirdinger equation corresponding to equation (1) gives the following
differential equation fony (x):

"2 o? R2k?
Y Uy = (E Z)w @3)

 2m* di?  2mr
where we define the effective potentidl;, as

*O2
[(x —x0)2 = xZ] O — |x))

m
Uepr(x) =

x, 2 272 h2k2
m*wyg 2 5, oL ¥
+— [(x—xo) — x5+ o2 }®(IXI—L)+2W 4)

wherewp = e¢B/m* is the cyclotronic frequency,

Q=0+ 03

and the points;. and xg are defined respectively as
Xe = (F — hkywp)/(m* Q%) (5)
xo = (F — hkywg)/(m*w?). (6)

Notice that since? is greater thamwg, x. is smaller thanxg. In this work, we assume that
the electronic charge is shifted in the positiwlirection, since, by construction, the electric
field points in the opposite direction. In other words, for non-zero external electric field,
the probability of finding the electron as— —oo is smaller than that as — oco. The
wave-function solution of the Sobdinger equation (3) satisfying this asymptotic boundary
condition is the following:

ciU(ay, —n) —o00o<x < —L
Y(x) = 1 c2U(ag, §) +c3Vag, §) x| < L (7)
caH (a,, n) L<x <

where thec; (i =1, 2, 3,4) are constants to be determined from the boundary conditions.
The functionH is defined as

H(a,x)=U(a, x)+ il"(% - a)V(a, x)



Parabolic quantum wells under crossed fields 9757

Figure 1. (a) shows that in the limit of strong electric field,s; is a single well. In this case
U.rs presents three turning points. Due to tunnelling through the barrier centred=at.,

the states ot/ are quasi-bound. Otherwise, &s;; has a finite depth, only a finite number

of quasi-bound states witlk < U,sr(L) can oscillate inside the well. Notice that in this
case the ground-state energy can have positive values. (b) stigwsn the limit of strong
magnetic field. In this casg,;, is a single well with infinite parabolic confinement; the related
parameter frequency is very closedg. Notice that in this case the ground-state energy can
have positive values. These bound states are very similar to Landau-like states. (c) shows that as
xe < L < xq, Usr exhibits a double-quantum-well slope which is composed from two parabolic
wells connected by a barrier centredxat= L. Notice that in this case the pointg andx, at
which U,ss has minimum values satisfies the inequaligy< L < x.. The double-quantum-well
states are such that the energy of the electron is below the top of the WdfrierU.ss (L))

and the related wave function can oscillate in two distinct wells. Notice that in this case the
ground-state energy can have negative values.

whereT is the gamma function [9], and where the functidité, z) and V (a, z) are the
Weber parabolic cylinder functions [9] with the following arguments and parameters:

2
n(x) = ’”h“’B (x — xo) ®)
-1 h2k?
@ wB<E 2m* eff(XO)) ©

h
§(x )—\/ x—xc) (10)

E _Zkz 11
e o i Uerr(xc) ). (11)
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Matching the wave function and the first derivativerat +L, we obtain the transcendental
equation for the energy spectrum. It is given by the following secular equation:

=U(ay, —n-) Uag,§-) Viag, §-) 0
NLS)
\/_U’(a,,, -n-) U'(ae, &) V'(ae, §-) 0
@B =0. (12)
0 Uag, &) Viag, &) Ulay, ny)
va
0 U'(ag, &y) V'(ag, &4) \/T_BU (ay, n+)

In the above determinanty = n(£L), & = &(£L) and we denote a3V’ the first
derivative of any Weber functiofV with respect to the argument. For non-zero electric
field, the electron tunnelling for > L is related to quasi-bound states. On the basis of this,
the solution of the above transcendental equation (12) lies in the energy complex plane.
In order to solve equation (12), we need first to understand the behaviour of the effective
potentialU,s; as the electric and magnetic field varies.

Figure 1(a) shows that, in the limit of weak magnetic fidltl;; is a single well where
the electronic confinement is related to quasi-bound states. In thisiéageresents three
turning points, andz, the solution of equation (12), is complex; thatis= R[E] +i I[E].
The level width3[ E] is related to tunnelling through a barrier centredcat L, and only a
finite number of quasi-bound states with E] < U.s¢(L) can oscillate inside the well. In
this situation,U, ;s resembles a FPQW under an external electric field [10]. In the opposite
limit, that of strong magnetic field (see figure 1(b)), the cyclotronic confinement dominates.
U,y is a single well with infinite parabolic confinement; the related parameter frequency is
very close tavg. These bound states are very similar to Landau-like states. In the two above
special situations the ground state of the system is related to a single well. For a review
of the main system properties in the above limiting cases, see the work of Cury, Celeste
and Portal [11] and that of Wang and Chuu [12]. However, for intermediate values of both
magnetic and electric fields, the behaviourlgf, can be very peculiar. For magnetic and
electric fields such that, < L < xo, U.ss exhibits a DQW slope (see figure 1(c)). In this
case,U.ss is composed of two parabolic-like wells connected by a barrier centred-aL..
The pointsxg andx, are such thal/,sr(x.) andU,¢r(xo) are minimum values ob/.¢¢. So,
if the energy of the electron is below the top of the bar(iEr< U.f+(L)), the related wave
function can oscillate in two distinct regions.

Figure 2(a) shows for fixed values &f andk, the behaviour of the effective potential
as the external magnetic field varies. This figure shows that there is a maximum value for
the magnetic fieldB = B, (F, ky), for which double-quantum-well states can survive. It
occurs only if the applied magnetic field is less thay,.. Otherwise, figure 2(b) shows
for fixed values ofB andk, that there is a minimum value for the external electric field
F = Fuim(B, ky) for which U, exhibits double-quantum-well states if the external electric
field is greater tharf,,;,. The critical fieldsB,,., and F,,;, are given respectively by

B = o™ | [EE 4 (B2 g 2 (13)
max = @ e 2Vo J 4V0 Y 4Vo
|%40) wp 2 Ea)B
Fopn=2— | — kyL—|. 14
L |:( w ) T 2V (14)

In general, the double-well spectrum is quasi-degenerate. If the wells are not correlated, the
spectrum is completely degenerate. However, wave-function tunnelling through the barrier
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B
L B] < B2 < BmaX , max
4 s , B2
% /

P
N

Figure 2. (a) shows thatU.s; cannot exhibit
a double-quantum-well state for magnetic field
04 3, i greater thamB = By, (F, ky) (see equation (13)).

Ny Lot .
b) N Fooin <Fy <F (b) shows that/,;; behaves as a double-quantum-
well potential if the applied electric field is less
(r) L than a minimum valueF’ = F,,;, (B, k,) (see equ-

ation (14)).

that connects the two wells can remove this degeneracy [13]. In other worAsisithe
eigen-energy related to the single-well case, a gross estimate for the double-quantum-well
eigen-energy is

E— E.=E+AE/2

where AE is the energy shift due to tunnelling. The valuesiafis (L), U.ss(x.) and
U.rr(xo) are very sensitive to variation in the parameters/y, F andB. So, if the height
or the width of the barrier is large, the spectrum can become completely degenerate.

3. The ground state

We assume that, = k. = 0 in the ground state. An algorithm for calculating the spectrum
of the ground state related to a DQW requires that the initial gliessed in solving the
transcendental equation (12) in the complex plane is such that

Uepr(L) > WE} > Min{U,ss(xc), Uers(x0)}

where mirda, b} is the smaller ofa andb. However, for these states the level width is
sharper. So for these double-well spectra we can neglect the imaginary gadraf solve
equation (12) in the real plane. In this last step it is advisable to use the uniform asymptotic
expansion to Weber functions [14] in order to minimize some numerical instabilities. In this
work, we assume a semiconductor heterostructure of @d, As—GaAs with an aluminium
concentrationr such that the heighty of the QW barrier is 150 meV, the width of the FPQW
is 2L = 300A and the effective mass* is 0.0667 times the rest electronic masg. Using
these QW parameters and adopting an applied electric field 62,5 kV cm™t < F,,;,
we solve equation (12) numerically for three different values of the applied magnetic field
B < B,ux.

For the magnetic field3 = 8.75 T, figure 3(a) shows the behaviour of the ground- and
first-excited-state wave functiong_ (solid line) andy,, (dashed line) respectively. In this
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Figure 3. For a QW of width Z. = 300,&, effective massn* = 0.0667mng and Vo = 200 meV,
and applied electric and magnetic fields = 625 kV cm™1, B = 8.75 T respectively,
(a) shows the ground- and first-excited-state wave functiangsolid line) andy ;. (dashed line)
respectively and the effective potenti@l;, (dotted line) in units of the barrier heighb, while
(b) shows, in units ofVy, E_, the ground-state energy (solid lindy,., the first-excited-state
energy (dashed line), and the effective potertigl; (dotted line).

case, the barrier that connects the two wells is large, so these wells cannot be correlated,
andy_ andy, are located in the region delimited by the FPQW. Figure 3(b) shbws
the ground-state energy (solid linef,,, the first-excited-state energy (dashed line), and
the effective potential/.;, (dotted line) in units of the barrier heigh. Notice that both
eigen-energies are below the minimurpy, (x.), So it is not possible for there to be strong
correlation between the two wells amdl = E, — E_, the level separation, is large.
However, for an applied magnetic field & = 7.06 T, correlation between the two
wells starts to become important; figures 4(a) and 4(b) show these results. In this situation,
the wave-function behaviour is very peculiar. Figure 4(a) showsihatthe ground-state
wave function (solid line), is strongly localized in regions close to the origin. On the other
hand, v, the first-excited-state wave function (dashed line), is appreciable in regions far
from the origin; in other words, in the first excited state the electron has a great probability
of being found close to the point = x. where U,s has a minimum. The left-hand
vertical axis of figure 4(b) gives the energy scale in units of the barrier h&ightvhere
E_ is the ground-state energy (solid ling),. is the first-excited-state energy (dashed line)
and U, is the effective potential (dotted line). Notice that both eigen-energies are above
both minimum effective-potential value$,.ss(xo) and U.sf(x.). The right-hand vertical
axis of figure 4(b) shows on an enlarged scéle and E. (in units of V;). Notice that
AE = E, — E_, the energy separation, is very small. In this case, the two wells can
exhibit correlation. This DQW ground-state energy has a value close to the ground-state
energy related to a single equivalent parabolic well centred=atx.. In the same manner,
the DQW first-excited-state energy has a value very close to the ground-state energy of an
effective single parabolic well centred at= xo. This is interesting, because two very close
eigen-energies have related wave functions exhibiting very different behaviour.
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Figure 4. For the same heterostructure parameters as for figure 3 but an applied magnetic field of
B =7.06 T, (a) shows thay_, the ground-state wave function (solid line), is strongly localized

in regions close to the origin angt,, the first-excited-state wave function (dashed line), is
shifted to regions far from the origin, while in (b) the left-hand vertical axis shows, in units of
Vo, E_, the ground-state energy (solid ling),, the first-excited-state energy (dashed line), and
the effective potential/,s; (dotted line) (notice thahE = E, — E_, the energy separation, is

very small) and the right-hand vertical axis shows, in unit¥@find on an enlarged scalg,

and E; (notice that, in this case, the two wells can exhibit correlation).

On decreasing the strength of the magnetic fiel®te: 6.40 T, the wave functiong _
andvy ., related to ground and first excited states respectively, are shifted to regions far from
the origin; this is shown in figure 5(a). Notice that for these states the probability of finding
the electron in regions delimited by a FPQW is very small. Figure 5(b) shows that, in
this case, the grounl _-states and first excitefl, -states are below the effective-potential
minimum U,s¢(x.). So the two wells do not exhibit correlation.

4. Conclusions

In this work, we have shown that a finite parabolic QW under crossed electric and magnetic
fields can behave as a double-quantum-well system. The effective potential exhibits DQW
behaviour for suitable choices for both fields (see equations (13) and (14)). The calculation
of this double-quantum-well spectrum is not trivial (see equation (12)). In this way, a
numerical algorithm was developed in order to solve the exact transcendental equation (12)
for energy eigenvalues. We showed that the energy spectrum degeneracy can be removed
by wave-function tunnelling through the barrier that connects the two wells (see figures 4(a)
and 4(b)). We showed that the wave-function behaviour is very sensitive to changes in the
applied fields (see figures 3, 4 and 5). For instance, if the applied fields are such that the two
wells are strongly correlated, it is possible to have high electronic charge density in both
wells for electrons having very close eigen-energies (see figures 3(a) and 3(b)). Finally,
we would like to note that in the present model the poterttigl; is very similar to the
double-well effective potential related to the electronic spin system in the presence of an
external magnetic field [15, 16]. On the basis of this analogy, we think that the present
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Figure 5. For the same heterostructure parameters as for figure 3 but an applied magnetic field
of B =6.40 T, (a) shows the ground- and first-excited-state wave functiangsolid line) and

¥4 (dashed line) respectively and the effective poterifigl (dotted line) in units of the barrier
height Vp, while (b) shows (in units oly), E_, the ground-state energy (solid linéj,., the
first-excited-state energy (dashed line), and the effective potditjal (dotted line).

model can behave as a new heterostructure electronic device. In other words, these abrupt
changes in electronic charge-density shape as the external fields vary can be usidgs a
mechanismin an electronic memory. Thedenary-like statescan be accessed by varying

the external applied electric and magnetic fields.
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