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Abstract. We show that, in the framework of the effective-mass approximation, an electron
confined in a finite parabolic quantum well under crossed electric and magnetic fields can behave
as a double-quantum-well system. These homogeneous crossed fields are such that the magnetic
field is parallel to the heterostructure layers and the electric field is applied perpendicular to
the magnetic field. For a suitable choice of both fields, the electron is confined to a double-
quantum-well effective potential.

1. Introduction

Homogeneous crossed electric and magnetic fields are powerful tools that permit us to make
desired changes in the trajectories of charged particles. They have been used as a velocity
filter in early atomic physics experiments [1, 2], as well as in the study of the chaotic
behaviour of the electron trajectories of Rydberg atoms [3] nowadays. The recent advances
in the fabrication and characterization of semiconductor heterostructures have shown that
the quantum wells in superlattice heterostructures are well simulated by a finite parabolic
potential [4, 5]. In semiconductor research, quantum tunnelling is a fundamental effect.
For instance, wave-function tunnelling through potential barriers is related to electronic
transport phenomena [6]. New electronic devices have been developed that are based on
quantum tunnelling phenomena. In general, these semiconductor devices are related to
double-barrier resonant quantum tunnelling (DBRT) [7] as well as double-quantum-well
tunnelling (DQWT) systems [8]. In the present work, we study the behaviour of an electron
confined in a finite parabolic quantum well (FPQW) subjected to external homogeneous
crossed electric and magnetic fields. We will show that for suitable values of the applied
fields, this system can simulate the double-quantum-well (DQW) problem.

This work is organized in the following manner. In the second section, we develop the
theoretical model and, on the basis of numerical results, we discuss in the third section the
special features of the bound state of the system. Finally, we conclude by discussing the
main results of this work and some possible applications.

2. Theory

We consider a homogeneous magnetic fieldB = (0, 0, B) applied parallel to the
heterostructure layers, so that in Landau’s gauge, the vector potential can be written as
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A = (0, xB,0). The homogeneous external electric fieldE = (−F/e, 0, 0) is perpendicular
to the magnetic field, whereF is a positive constant ande the modulus of the electron
charge. In the framework of the effective-mass approximation, the Hamiltonian of an
electron confined in a FPQW subjected to the above crossed electric and magnetic fields
can be written as

Ĥ = (p2
x + p2

z )

2m∗
+ (py + exB)

2

2m∗
+ V (x)− Fx (1)

wherem∗ is the effective mass and the confining FPQW potentialV is given by

V (x) = m∗ω2x2

2
2(L− |x|)+ m

∗ω2L2

2
2(|x| − L) (2)

where2 is the Heaviside step function and the FPQW width and height are 2L and
V0 = m∗ω2L2/2 respectively. If the total energy of the system isE, and assuming free-
electronic lateral transport, the wave function can be written as

9(r) = exp(i(kyy + kzz))ψ(x).
The resulting Schr̈odinger equation corresponding to equation (1) gives the following
differential equation forψ(x):

− h̄2

2m∗
d2ψ

dx2
+ Ueff (x)ψ =

(
E − h̄

2k2
z

2m∗

)
ψ (3)

where we define the effective potentialUeff as

Ueff (x) ≡ m∗�2

2

[
(x − xc)2− x2

c

]
2(L− |x|)

+ m∗ω2
B

2

[
(x − x0)

2− x2
0 +

ω2L2

ω2
B

]
2(|x| − L)+ h̄

2k2
y

2m∗
(4)

whereωB = eB/m∗ is the cyclotronic frequency,

� ≡
√
ω2+ ω2

B

and the pointsxc andx0 are defined respectively as

xc ≡ (F − h̄kyωB)/(m∗�2) (5)

x0 ≡ (F − h̄kyωB)/(m∗ω2
B). (6)

Notice that since� is greater thanωB , xc is smaller thanx0. In this work, we assume that
the electronic charge is shifted in the positivex-direction, since, by construction, the electric
field points in the opposite direction. In other words, for non-zero external electric field,
the probability of finding the electron asx → −∞ is smaller than that asx → ∞. The
wave-function solution of the Schrödinger equation (3) satisfying this asymptotic boundary
condition is the following:

ψ(x) =


c1U(aη,−η) −∞ < x 6 −L
c2U(aξ , ξ)+ c3V (aξ , ξ) |x| 6 L
c4H(aη, η) L 6 x <∞

(7)

where theci (i = 1, 2, 3, 4) are constants to be determined from the boundary conditions.
The functionH is defined as

H(a, x) ≡ U(a, x)+ i0

(
1

2
− a

)
V (a, x)
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Figure 1. (a) shows that in the limit of strong electric field,Ueff is a single well. In this case
Ueff presents three turning points. Due to tunnelling through the barrier centred atx = L,
the states ofUeff are quasi-bound. Otherwise, asUeff has a finite depth, only a finite number
of quasi-bound states withE < Ueff (L) can oscillate inside the well. Notice that in this
case the ground-state energy can have positive values. (b) showsUeff in the limit of strong
magnetic field. In this caseUeff is a single well with infinite parabolic confinement; the related
parameter frequency is very close toωB . Notice that in this case the ground-state energy can
have positive values. These bound states are very similar to Landau-like states. (c) shows that as
xc < L < x0, Ueff exhibits a double-quantum-well slope which is composed from two parabolic
wells connected by a barrier centred atx = L. Notice that in this case the pointsx0 andxc at
whichUeff has minimum values satisfies the inequalityx0 < L < xc. The double-quantum-well
states are such that the energy of the electron is below the top of the barrier(E < Ueff (L))

and the related wave function can oscillate in two distinct wells. Notice that in this case the
ground-state energy can have negative values.

where0 is the gamma function [9], and where the functionsU(a, z) andV (a, z) are the
Weber parabolic cylinder functions [9] with the following arguments and parameters:

η(x) =
√

2m∗ωB
h̄

(x − x0) (8)

aη = −1

h̄ωB

(
E − h̄

2k2
z

2m∗
− Ueff (x0)

)
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√

2m∗�
h̄
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(
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2k2
z
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− Ueff (xc)

)
. (11)
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Matching the wave function and the first derivative atx = ±L, we obtain the transcendental
equation for the energy spectrum. It is given by the following secular equation:∣∣∣∣∣∣∣∣∣∣∣∣∣

−U(aη,−η−) U(aξ , ξ−) V (aξ , ξ−) 0√
�√
ωB
U ′(aη,−η−) U ′(aξ , ξ−) V ′(aξ , ξ−) 0

0 U(aξ , ξ+) V (aξ , ξ+) U(aη, η+)

0 U ′(aξ , ξ+) V ′(aξ , ξ+)

√
�√
ωB
U ′(aη, η+)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (12)

In the above determinant,η± ≡ η(±L), ξ± ≡ ξ(±L) and we denote asW ′ the first
derivative of any Weber functionW with respect to the argument. For non-zero electric
field, the electron tunnelling forx > L is related to quasi-bound states. On the basis of this,
the solution of the above transcendental equation (12) lies in the energy complex plane.
In order to solve equation (12), we need first to understand the behaviour of the effective
potentialUeff as the electric and magnetic field varies.

Figure 1(a) shows that, in the limit of weak magnetic field,Ueff is a single well where
the electronic confinement is related to quasi-bound states. In this case,Ueff presents three
turning points, andE, the solution of equation (12), is complex; that is,E = <[E]+ i =[E].
The level width=[E] is related to tunnelling through a barrier centred atx = L, and only a
finite number of quasi-bound states with<[E] < Ueff (L) can oscillate inside the well. In
this situation,Ueff resembles a FPQW under an external electric field [10]. In the opposite
limit, that of strong magnetic field (see figure 1(b)), the cyclotronic confinement dominates.
Ueff is a single well with infinite parabolic confinement; the related parameter frequency is
very close toωB . These bound states are very similar to Landau-like states. In the two above
special situations the ground state of the system is related to a single well. For a review
of the main system properties in the above limiting cases, see the work of Cury, Celeste
and Portal [11] and that of Wang and Chuu [12]. However, for intermediate values of both
magnetic and electric fields, the behaviour ofUeff can be very peculiar. For magnetic and
electric fields such thatxc < L < x0, Ueff exhibits a DQW slope (see figure 1(c)). In this
case,Ueff is composed of two parabolic-like wells connected by a barrier centred atx = L.
The pointsx0 andxc are such thatUeff (xc) andUeff (x0) are minimum values ofUeff . So,
if the energy of the electron is below the top of the barrier(E < Ueff (L)), the related wave
function can oscillate in two distinct regions.

Figure 2(a) shows for fixed values ofF andky the behaviour of the effective potential
as the external magnetic field varies. This figure shows that there is a maximum value for
the magnetic field,B = Bmax(F, ky), for which double-quantum-well states can survive. It
occurs only if the applied magnetic field is less thanBmax . Otherwise, figure 2(b) shows
for fixed values ofB and ky that there is a minimum value for the external electric field
F = Fmim(B, ky) for whichUeff exhibits double-quantum-well states if the external electric
field is greater thanFmin. The critical fieldsBmax andFmin are given respectively by

Bmax ≡ ωm
∗

e

√FL
2V0
+
(
kyL

h̄ω

4V0

)2

− kyL h̄ω
4V0

 (13)

Fmin ≡ 2
V 0

L

[(
ωB

ω

)2

+ kyLh̄ωB
2V0

]
. (14)

In general, the double-well spectrum is quasi-degenerate. If the wells are not correlated, the
spectrum is completely degenerate. However, wave-function tunnelling through the barrier
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Figure 2. (a) shows thatUeff cannot exhibit
a double-quantum-well state for magnetic field
greater thanB = Bmax(F, ky) (see equation (13)).
(b) shows thatUeff behaves as a double-quantum-
well potential if the applied electric field is less
than a minimum value,F = Fmin(B, ky) (see equ-
ation (14)).

that connects the two wells can remove this degeneracy [13]. In other words, ifĒ is the
eigen-energy related to the single-well case, a gross estimate for the double-quantum-well
eigen-energy is

E→ E± = Ē ±1E/2
where1E is the energy shift due to tunnelling. The values ofUeff (L), Ueff (xc) and
Ueff (x0) are very sensitive to variation in the parametersL, V0, F andB. So, if the height
or the width of the barrier is large, the spectrum can become completely degenerate.

3. The ground state

We assume thatky = kz = 0 in the ground state. An algorithm for calculating the spectrum
of the ground state related to a DQW requires that the initial guessĒ used in solving the
transcendental equation (12) in the complex plane is such that

Ueff (L) > <{Ē} > min{Ueff (xc), Ueff (x0)}
where min{a, b} is the smaller ofa and b. However, for these states the level width is
sharper. So for these double-well spectra we can neglect the imaginary part ofE and solve
equation (12) in the real plane. In this last step it is advisable to use the uniform asymptotic
expansion to Weber functions [14] in order to minimize some numerical instabilities. In this
work, we assume a semiconductor heterostructure of Ga1−xAl xAs–GaAs with an aluminium
concentrationx such that the heightV0 of the QW barrier is 150 meV, the width of the FPQW
is 2L = 300Å and the effective massm∗ is 0.0667 times the rest electronic massm0. Using
these QW parameters and adopting an applied electric field ofF = 62.5 kV cm−1 < Fmin
we solve equation (12) numerically for three different values of the applied magnetic field
B < Bmax .

For the magnetic fieldB = 8.75 T, figure 3(a) shows the behaviour of the ground- and
first-excited-state wave functionsψ− (solid line) andψ+ (dashed line) respectively. In this
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Figure 3. For a QW of width 2L = 300 Å, effective massm∗ = 0.0667m0 andV0 = 200 meV,
and applied electric and magnetic fieldsF = 62.5 kV cm−1, B = 8.75 T respectively,
(a) shows the ground- and first-excited-state wave functionsψ− (solid line) andψ+ (dashed line)
respectively and the effective potentialUeff (dotted line) in units of the barrier heightV0, while
(b) shows, in units ofV0, E−, the ground-state energy (solid line),E+, the first-excited-state
energy (dashed line), and the effective potentialUeff (dotted line).

case, the barrier that connects the two wells is large, so these wells cannot be correlated,
andψ− andψ+ are located in the region delimited by the FPQW. Figure 3(b) showsE−,
the ground-state energy (solid line),E+, the first-excited-state energy (dashed line), and
the effective potentialUeff (dotted line) in units of the barrier heightV0. Notice that both
eigen-energies are below the minimumUeff (xc), so it is not possible for there to be strong
correlation between the two wells and1E = E+ − E−, the level separation, is large.

However, for an applied magnetic field ofB = 7.06 T, correlation between the two
wells starts to become important; figures 4(a) and 4(b) show these results. In this situation,
the wave-function behaviour is very peculiar. Figure 4(a) shows thatψ−, the ground-state
wave function (solid line), is strongly localized in regions close to the origin. On the other
hand,ψ+, the first-excited-state wave function (dashed line), is appreciable in regions far
from the origin; in other words, in the first excited state the electron has a great probability
of being found close to the pointx = xc whereUeff has a minimum. The left-hand
vertical axis of figure 4(b) gives the energy scale in units of the barrier heightV0, where
E− is the ground-state energy (solid line),E+ is the first-excited-state energy (dashed line)
andUeff is the effective potential (dotted line). Notice that both eigen-energies are above
both minimum effective-potential valuesUeff (x0) andUeff (xc). The right-hand vertical
axis of figure 4(b) shows on an enlarged scaleE− andE+ (in units of V0). Notice that
1E = E+ − E−, the energy separation, is very small. In this case, the two wells can
exhibit correlation. This DQW ground-state energy has a value close to the ground-state
energy related to a single equivalent parabolic well centred atx = xc. In the same manner,
the DQW first-excited-state energy has a value very close to the ground-state energy of an
effective single parabolic well centred atx = x0. This is interesting, because two very close
eigen-energies have related wave functions exhibiting very different behaviour.
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Figure 4. For the same heterostructure parameters as for figure 3 but an applied magnetic field of
B = 7.06 T, (a) shows thatψ−, the ground-state wave function (solid line), is strongly localized
in regions close to the origin andψ+, the first-excited-state wave function (dashed line), is
shifted to regions far from the origin, while in (b) the left-hand vertical axis shows, in units of
V0, E−, the ground-state energy (solid line),E+, the first-excited-state energy (dashed line), and
the effective potentialUeff (dotted line) (notice that1E = E+ −E−, the energy separation, is
very small) and the right-hand vertical axis shows, in units ofV0 and on an enlarged scale,E−
andE+ (notice that, in this case, the two wells can exhibit correlation).

On decreasing the strength of the magnetic field toB = 6.40 T, the wave functionsψ−
andψ+, related to ground and first excited states respectively, are shifted to regions far from
the origin; this is shown in figure 5(a). Notice that for these states the probability of finding
the electron in regions delimited by a FPQW is very small. Figure 5(b) shows that, in
this case, the groundE−-states and first excitedE+-states are below the effective-potential
minimumUeff (xc). So the two wells do not exhibit correlation.

4. Conclusions

In this work, we have shown that a finite parabolic QW under crossed electric and magnetic
fields can behave as a double-quantum-well system. The effective potential exhibits DQW
behaviour for suitable choices for both fields (see equations (13) and (14)). The calculation
of this double-quantum-well spectrum is not trivial (see equation (12)). In this way, a
numerical algorithm was developed in order to solve the exact transcendental equation (12)
for energy eigenvalues. We showed that the energy spectrum degeneracy can be removed
by wave-function tunnelling through the barrier that connects the two wells (see figures 4(a)
and 4(b)). We showed that the wave-function behaviour is very sensitive to changes in the
applied fields (see figures 3, 4 and 5). For instance, if the applied fields are such that the two
wells are strongly correlated, it is possible to have high electronic charge density in both
wells for electrons having very close eigen-energies (see figures 3(a) and 3(b)). Finally,
we would like to note that in the present model the potentialUeff is very similar to the
double-well effective potential related to the electronic spin system in the presence of an
external magnetic field [15, 16]. On the basis of this analogy, we think that the present
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Figure 5. For the same heterostructure parameters as for figure 3 but an applied magnetic field
of B = 6.40 T, (a) shows the ground- and first-excited-state wave functionsψ− (solid line) and
ψ+ (dashed line) respectively and the effective potentialUeff (dotted line) in units of the barrier
heightV0, while (b) shows (in units ofV0), E−, the ground-state energy (solid line),E+, the
first-excited-state energy (dashed line), and the effective potentialUeff (dotted line).

model can behave as a new heterostructure electronic device. In other words, these abrupt
changes in electronic charge-density shape as the external fields vary can be used as abinary
mechanismin an electronic memory. Thesebinary-like statescan be accessed by varying
the external applied electric and magnetic fields.
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